Spam and Bot Detection

note
For information about modifying this plugin or creating your own custom plugins, see Customize and Build Your Own Plugins.
For general plugin information, see Plugins for projects and Plugin FAQ.
About
You can manually pause an annotator to prevent stop them from completing tasks and revoke their project access.
This script automatically pauses an annotator who breaks any of the following rules and customizes the message that appears:
Too many duplicate values
timesInARow(3)
:Checks if the last three submitted annotations in the
TextArea
field (comment
) all have the same value. If they do, it returns a custom warning message.Too many similar values
tooSimilar()
:For the
Choices
options (sentiment
), it computes a deviation over the past values. If the deviation is below a threshold (meaning the values are too uniform/similar), it returns a custom warning message.Too many submissions over a period of time
tooFast()
:Monitors the overall speed of annotations. It checks if, for example, 20 annotations were submitted in less than 10 minutes. If so, a custom warning appears.
To unpause an annotator, use the Members dashboard.
Tip
If you hover over the Paused indicator, you can see the message that was shown to the user when they were paused. If a user was manually paused, it also shows who initiated the action.
Plugin
/****** CONFIGURATION FOR PAUSING RULES ******/
/**
* `fields` describe per-field rules in a format
* <field-name>: [<rule>(<optional params for the rule>)]
* `global` is for rules applied to the whole annotation
*/
const RULES = {
fields: {
comment: [timesInARow(3)],
sentiment: [tooSimilar()],
},
global: [tooFast()],
}
/**
* Messages for users when they are paused.
* Each message is a function with the same name as original rule and it receives an object with
* `items` and `field`.
*/
const MESSAGES = {
timesInARow: ({ field }) => `Too many similar values for ${field}`,
tooSimilar: ({ field }) => `Too similar values for ${field}`,
tooFast: () => `Too fast annotations`,
}
/****** ALL AVAILABLE RULES ******/
/**
* They recieve params and return function which recieves `items` and optional `field`.
* If condition is met it returns warning message. If not — returns `false`.
*/
// check if values for the `field` in last `times` items are the same
function timesInARow(times) {
return (items, field) => {
if (items.length < times) return false
const last = String(items.at(-1).values[field])
return items.slice(-times).every((item) => String(item.values[field]) === last)
? MESSAGES.timesInARow({ items, field })
: false
};
}
function tooSimilar(deviation = 0.1, max_count = 10) {
return (items, field) => {
if (items.length < max_count) return false
const values = items.map((item) => item.values[field])
const points = values.map((v) => values.indexOf(v))
return calcDeviation(points) < deviation
? MESSAGES.tooSimilar({ items, field })
: false
};
}
function tooFast(minutes = 10, times = 20) {
return (items) => {
if (items.length < times) return false
const last = items.at(-1)
const first = items.at(-times)
return last.created_at - first.created_at < minutes * 60
? MESSAGES.tooFast({ items })
: false
};
}
/****** INTERNAL CODE ******/
const project = DM.project.id
if (!DM.project) return;
const key = ["__pause_stats", project].join("|")
const fields = Object.keys(RULES.fields)
// { sentiment: ["positive", ...], comment: undefined }
const values = Object.fromEntries(fields.map(
(field) => [field, DM.project.parsed_label_config[field]?.labels],
))
// simplified version of MSE with normalized x-axis
function calcDeviation(data) {
const n = data.length;
// we normalize indices from -n/2 to n/2 so meanX is 0
const mid = n / 2;
const mean = data.reduce((a, b) => a + b) / n;
const k = data.reduce((a, b, i) => a + (b - mean) * (i - mid), 0) / data.reduce((a, b, i) => a + (i - mid) ** 2, 0);
const mse = data.reduce((a, b, i) => a + (b - (k * (i - mid) + mean)) ** 2, 0) / n;
return Math.abs(mse);
}
LSI.on("submitAnnotation", (_store, ann) => {
const results = ann.serializeAnnotation()
// { sentiment: "positive", comment: "good" }
const values = {}
fields.forEach((field) => {
const value = results.find((r) => r.from_name === field)?.value
if (!value) return;
if (value.choices) values[field] = value.choices.join("|")
else if (value.text) values[field] = value.text
})
let stats = []
try {
stats = JSON.parse(localStorage.getItem(key)) ?? []
} catch(e) {}
stats.push({ values, created_at: Date.now() / 1000 })
for (const rule of RULES.global) {
const result = rule(stats)
if (result) {
localStorage.setItem(key, "[]");
pause(result);
return;
}
}
for (const field of fields) {
if (!values[field]) continue;
for (const rule of RULES.fields[field]) {
const result = rule(stats, field)
if (result) {
localStorage.setItem(key, "[]");
pause(result);
return;
}
}
}
localStorage.setItem(key, JSON.stringify(stats));
});
function pause(verbose_reason) {
const body = {
reason: "CUSTOM_SCRIPT",
verbose_reason,
}
const options = {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify(body),
}
fetch(`/api/projects/${project}/members/${Htx.user.id}/pauses`, options)
}
Related LSI instance methods:
Related frontend events:
Labeling config
This labeling config presents users with text and asks them to:
- Provide a sentiment value using
<Choices>
- Comment on their reasoning using
<TextArea>
<View>
<Text name="text" value="$text"/>
<View style="box-shadow: 2px 2px 5px #999; padding: 20px; margin-top: 2em; border-radius: 5px;">
<Header value="What is the sentiment of this text?" />
<Choices name="sentiment" toName="text" choice="single" showInLine="true">
<Choice value="positive" hotkey="1" />
<Choice value="negative" hotkey="2" />
<Choice value="neutral" hotkey="3" />
</Choices>
<Header value="Why?" />
<TextArea name="comment" toName="text" rows="4" placeholder="Add your comment here..." />
</View>
</View>
Related tags:
Sample data
[
{
"data": {
"text": "I recently purchased a portable Bluetooth speaker and have been impressed with its clear sound and long battery life. The speaker is compact and easy to use, making it perfect for outdoor adventures."
}
},
{
"data": {
"text": "I bought a smartwatch from this vendor and it has exceeded my expectations. The device offers an intuitive user interface and tracks my daily activities accurately while looking very stylish on my wrist."
}
},
{
"data": {
"text": "I ordered a pair of noise-cancelling headphones and they don't do anything to cancel out noise. Waste of money."
}
}
]